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ABSTRACT

The multivariate analysis techniques of cluster

analysis, principal components analysis, and discriminant

analysis are examined in this thesis. The theory and

applications of each of the techniques are discussed.

Computer software available at the Naval Postgraduate School

is discussed and sample jobs are included.

A hierarchical cluster analysis algorithm, available in

the IMSL software package, is applied to a set of data

extracted from a group of subjects for the purpose of

partitioning a collection of 26 attributes of a weapon

system into six clusters of superattributes.

A nonhierarchical clustering procedure, principal

components analysis, and discriminant analysis were all

applied to a collection of data on tanks considering of

twenty-four observations of ten attributes of tanks. The

cluster analysis shows that the tanks cluster somewhat

naturally by nationality. The principal components analysis

and the discriminant analysis show that tank weight is the

single most important discriminator among nationality.
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I. DISCUSSION OF MULTIVARIATE DATA ANALYSIS

A. INTRODUCTION

As a set of statistical techniques, multivariate data

analysis is concerned with data collected on several dimen-

sions of the same observations. Techniques can be used for

many purpose in the behavioral, mathematical, and adminis-

trative sciences - ranging from rigidly controlled experi..

ments to explain relationships assumed to be present in a

large mass of data to attempts to cluster similar elements

or to find functions of the variables that will best

discriminate among preselected subpopulations of the

observations.

The heart of any multivariate analysis consists of the

data matrix. This matrix is a table that gives the results

of a number of observations on a number of variables

simultaneously (Table I).

8
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Illustrative Data Matrix

Variables

Observations 1 2 3 j .... p

1 xll x12  x13  Xlj Xlp

~ 2 x 13 x xj xp
2 x21 x22 x23 X2j X2p

i ii xi2 xi3 Xlj Xip

n x x x x x
nl n2 n3 nj np

TABLE I.

The table consists of a set of observations (the n

rows) and a set of measurements on those observations (the

p columns). Cell entries represent the value xij of

observation i on variable j . The values are

characteristics of the observations and serve to define the

observations in any specific study. The cell values may

consist of nominal, ordinal, interval, or ratio-scaled

measurements, or varicus combinations of these across columns.

9
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In a general sense "multivariate" analysis would con-

cern two main features:

1. The multivariate character lies in the

multiplicity of the p variables, not

in the size of the set n

2. The variables are dependent among them-

selves so that we can not split off one

or more from the others and consider it

by itself. The variables must be

considered together.

There are three characteristics often used as a basis

for the classification of multivariate analysis:

1. whether one's principal focus is on the

objects or on the variables of the data

matrix;

2. whether the data matrix is partitioned

into criterion and independent subsets,

and the number of variables in each;

3. whether the cell values represent

nominal, ordinal, or interval scale

measurements.

This classification results in four major subdivisions of

interest:

1. single criterion, multiple predictor

association, including multiple regression,

analysis of variance and covariance, and

two-group discriminant analysis;

10



2. multiple criterion, multiple predictor

association, including canonical correla-

tion, multivariate analysis of variance

and covariance, and multiple discriminant

analysis;

3. analysis of variable interdependence,

including factor analysis, multidimen-

sional scaling, and other types of

dimension-reducing methods;

4. analysis of interobject similarity,

including cluster analysis and other

types of grouping procedures.

The first two categories involve dependence structures

where the data matrix is partitioned into criterion and

independent subsets; in both cases interest is focused on

the variables. The last two categories are concerned with

interdependence - either focusing on variables or on

observations. Within each of four categories, various

techniques are differentiated in terms of the type of scale

assumed.

In this research, we consider only the following

techniques of multivariate analysis:

1. Principal components analysis

2. Discriminant analysis

3. Cluster analysis

11



II. PRINCIPAL COMPONENTS ANALYSIS

The basic idea of principal components analysis is to

describe the dispersion of an array of n points in p-

dimensional space by introducing a new set of orthogonal

linear coordinates so that the sample variances of the

given data points with respect to these derived coordinates

are in decreasing order of magnitude. Thus the first

principal component is such that the projection of given

points onto it have maximum variance among all possible

linear coordinates; the second principal component has

maximum variance subject to being orthogonal to the first;

and so on.

Suppose that the random variables X1 , X2 . .......

Xp of interest have a certain multivariate distribution

with finite mean vector u and variance-covariance matrix

E

From this population a sample of n independent

observation vectors has been drawn. The observation can

be written as the usual nxp data matrix.

X l ........... }.[.]. .i

L4 I.............. np7- -n-

12
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fl
The estimate of Z will be the usual sample variance-

covariance matrix S defined as follows:

S =A

n (2)
A * Z (X. - )(X. -~j =

The information we shall need for our principal compo-

nents analysis will be contained in S . However, it will

be necessary to make a choice of measures of dependence:

should we work with the variances and covariances of the

observations, and carry out the analysis in original unit

of the responses, or would a more accurate picture of the

dependence pattern be obtained if each xij were trans-

formed to a standarized score

X. - X.
Z.. =

and the correlation matrix R employed? The components

obtained from S and R in general not the same, nor is

it possible to pass from one solution to the other by a

simple scaling of the coefficients.

If the responses are in widely different units (i.e.,

number of crew, weight in tons, speed in kilometer per

hour, etc.) with large differences in the magnitudes,

linear compounds of original quantities would have little

13



meaning and standarized variates and correlation matrix

should be employed. Conversely, if the responses are

reasonably commensurable, the covariance form has a greater

statistical appeal, for the i-th principal component is

that linear compound of the responses which explains the

i-th largest portion of the total response variance, and

maximization of such total variance of standard scores is

rather artificial.

The first principal component of the complex of sample

values of the responses X1 , ......... X is the2p ,
linear compound

YI = allX +. .......... + aplX p  (3)

whose coefficients ail are the elements of the eigenvector

associated with the greatest eigenvalue XI of the sample

variance-covariance matrix of the responses. The ail are

are unique up to multiplication by a scale factor, and if

they are scaled so that a' 1a1 - 1 , the eigenvalue xI is

interpretable as the sample variance of Y

Numerical representation of the first principal compo-

nent is to find the vector A1  such that

Y1 . a1..Xl 1 . ......... + a pXp
(4)

- AIX
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V
which maximizes sample variance

2 P pSy Y E E a ilajlis ij
1 i 1 j=1

(5)
A'SA1

for all coefficient vectors normalized so that A'IA = 1.

To determine the coefficients, the normalization constraint

is introduced by means of Lagrange multiplier and the

resulting expression is differentiated with respect to A'1

2

S 1 (  AI A)] -A-[AI'SAI + A(l A'A
1 1(6)

= 2(S - 1 I)A 1

The coefficients must satisfy the p simultaneous linear

equations.

(S - X 1 )AI = 0 (7)

If the solution to these equation is to be other than the

null vector, the value of Xl must be chosen so that

is- 1 I- 0 (8)

xi is thus an eigenvalue of the variance-covariance matrix,

and A1  is its associated eigenvector. To determine which

of the p eigenvalues should be used, premultiply the

15
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the system of equation (7) by AI' Since A1
1AI - 1 , it

follows that

I -i AIS A1 2SY

But the coefficient'vecotr was chosen to maximize this

variance, and therefore, X. must be the greatest eigen-

value of S

The second principal component is that linear compound

Y2 = a1 2Xl + ........... + ap2 Xp (9)

whose coefficients have been chosen, subject to the con-

straints

A2' A2 = 1 (10)

A1 ' A2 = 0

so that the variance of Y2 I A2' S A2 , is a maximum.

The first constraint is merely a scaling to assure the

uniqueness of the coefficients, while the second requires

that A1  and A2 be orthogonal.

The coefficients of the second component can also be

found by the Lagrangian technique with two multipliers X2

and Ii Differentiating this with respect to A2 gives:

16



-[A 2' S A2 4 X2 (1 A2' A2) +iAl' A2)

= 2(S - X21)A2  + 1A1

If the right-hand side is set equal to 0 and premultiplied

by A1 ' , it follows from the normalization and orthogonality

conditions that

2 A2' S A2 + 1 - 0 (12)

Similar premultiplication of the equation (7) by A2'

implies that

A2 ' S A2 = 0 (13)

and hence u = 0 . The second vector must satisfy

(S - X21)A2 = 0 (14)

And it follows that the coefficients of the second component

are thus the elements of the eigenvector corresponding to

the second greatest eigenvalue. The remaining principal

components are found in their turn in the same manner from

the other eigenvectors.

Thus the j-th principal component of the sample of

p-variate observations is the linear compound

Y alX 1 +.. .......... + apjXp (1)

17



whose coefficients are the elements of the eigenvector of

the sample variance-covariance matrix S corresponding to

the j-th largest eigenvalue X . If Xi # j 9 the

coefficients of the i-th and j-th components are

necessarily orthogonal; if X i = X. , the elements can be

chosen to be orthogonal, although an infinity of such

orthogonal vectors exists. The sample variance of the

j-th components is X. , and the total system variance is

thus

X1 + 2 +......... + p atr S (16)

The importance of the j-th component in a more parsimonious

description of the system is measured by

X. (17)

which gives the fraction of the total variance contributed

to the j-th component.

18



III. DISCRIMINANT ANALYSIS

A. INTRODUCTION

The basic idea of discriminant analysis consists of

assigning an individual from a group of individuals to one

of several known or unknown distinct propulations, on the

basis of observations on several characters of the indi-

vidual or group and a sample of observations on these

characters from the populations if these are unknown.

Fisher (1936) was the first to suggest a linear

function of variables representing different characters,

hereafter called the linear discriminant function (discrimi-

nator) for classifying an individual into one of two popu-

lations. Later research extended the analysis to classifica-

tion into one of k populations.

For the univariate case Fisher suggested a rule which

classifies an observation x into the i-th univariate

population if

X - Xi . min (X - XI X X2 ) i - 1,2 (18)

where X. is the sample mean based on a sample of size N1

from i-th population. For two p-variate populations

1 and 72  (with the same covariance matrix) Fisher

replaced the vector random variable by an optimum linear

combination of its components obtained by maximizing the

19



ratio of the difference of the expected values of a linear

combination under 7i and 2 to its standard deviation.

He then used his univariate discrimination method with this

optimum linear combination of components as the random

variable.

Rao (1948) considered the problem of classifying

people into one of these populations castes of India. He

assumed that each of the three populations could be

characterized by four variables - structure (xl), sitting

height (x2), nasal depth (x3), and nasal height (x4 ) - of

each member of the population. On the basis of sample

observations on these characters from the three populations

the problem is to classify an individual with observation

X = (xl,x 2,x3,x4) T into one of three populations. He used

a linear discriminator to obtain the solution.

B. THEORY

In general, the underlying assumptions of discriminant

analysis are:

1. the groups being investigated are discrete

and identifiable;

2. each observation in each group can be

described by a set of measurements on p

characteristics or variables;

3. these p variables are assumed to have

a multivariate normal distribution in each

population.

20
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The purposes of discriminant analysis are:

1. to test for mean group differences and to

describe the overlaps among groups;

2. to construct classification schemes based

upon the set of p variables in order to

assign previously unclassified observations

to the appropriate groups.

Hence, the problem of studying the direction of group

differences is, equivalently, a problem of finding a linear

combination of the original independent variables that

shows large differences in group means. In short, dis-

criminant analysis is a method for determining scuh linear

combinations.

The first step toward determining a linear combination

of a set of variables such that several group means on this

linear combination will differ widely among themselves, is

to decide on a criterion for measuring such group-mean

differences. Once a linear combination has been constructed,

that means there is just a single tranformed variable.

Hence, the F-ratio for testing the significance of the

over all difference among several group means on a single

variable suggests an appropriate criterion.

F v'Bv (19)

where v' (vl,v 2 , .. . .. . .. . . .., vp), a set of weight which

maximizes X

21



G
i Z N1( i. R )(Ri. x P
i 
= 

1 
n

SG i'W M E (xij -xi.)(xij " i.) '

xij is the jth observation vector in the i-th

group.

x is the grand mean vector of the data.

G is the number of groups.

ni is the number of observations in the ith group.

Prime notation indicates transpose.

This ratio X , called the discriminant criterion, was

originally proposed by Fisher in connection with his two-

group discriminant function. Once a criterion for group

differentiation has been determined, a set of weights,

(vI v2 , ......... , vp ), which maximizes this criterion,

should be determined. This is accomplished by taking the

partial derivative of X with respect to each component

vi of v and setting the result equal to zero.

_X 2[(Bv)(v'Wv) - (v'Wv)(Wv)]
v (vWv)2

(20)
=2(By - Wv) . o

v'Wv

22



which is equivalent to

(B - XW)v = 0

(W B - XT)v = 0 
(21)

I
This equation is of the form

(A - XI)v - 0 (22)

It's solution, yielding the eigenvalues Xp and associated

eigenvectors V of the matrix A , is therefore the same

as in the principal components analysis, and thus the solved
problem satisfies the problem of maximizing the discriminant

criterion.

In the last equation, the number of non-zero eigenvalues

of a square matrix A is equal to the rank of A . With

W 1B playing the role of A , the number of non-zero eigen-

values depends on the rank of B , since the rank of the

product of two matrices can not exceed the smaller of the two

factor matrices' ranks, and W 1 (being nonsingular) must be

of full rank p , while the rank of B is usually smaller

than p . Thus it is possible to denote the rank of B by

r - min (G-I,p)

From the fact that the eigenvalues Xp are the values

assumed by the discriminant criterion for linear combination

using the elements of the corresponding eigenvectors P

as combining weights, it is clear that the eigenvector

23



n
V' = V V provides a set of weights such

.1~~l ............................ vlp)

that the transformed variable

Y= vIX + v X ............ + VlpXp  (23)

has the largest discriminant-criterion, X , achievable by

any linear combination of the p independent variables.

What are the properties of the remaining eigenvectors,

v2,v3 ...... ,v ? The second discriminant function

Y2 = v21X1 + v2 2X2 +........... + V2pxp  whose weights are the

elements of the eigenvector v2  associated with the second

largest eigenvalue X2 of W'IB has the largest

discriminant-criterion among those linear combinations of

the Xi  that are uncorrelated with the first discriminant

function in the total sample observation. Its proof is

analogous of that of princpal components analysis. Each

discriminant function has a relative (or conditional)

maximum value for its discriminant criterion. Therefore, it

needs nonly to show that Y2 is uncorrelated with Y1

Noting that this correlation is proportional to v1 TV2

(where T = W + B), we have to prove that vl'Tv 2 = 0

(B - XiW)vi - 0 for each i (24)

hence,

Bv X i WV I and Bv2 = X2Wv2

24
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premultiplying these equations by v2' and vI' respectively,

v2 'BvI = XIv 2 'WvI

(25)

vI Bv2 = X2v1 'Wv2

taking the transpose of both sides of the first equation (B

and W are symmetric)

vI'BV 2 = 1 v1 WV2

thus

x 1VIWV2 = x?2V1 WV2

(XI " Xs)V 1 WIV2 = 0

since x1 X2 ' VI'WV2 = 0

therefore, VIWV2 = 0 which means V1  and V2  are

uncorrelated, and Y2 has this property: its discriminant-

criterion value, X2 , is the largest achievable by any

linear combination of X's that is uncorrelated (in the

total sample) with Y1  Similarly

Y3 = v3 1XI + v3 2X2 ....... + V3pX p  (36)

has the largest possible discriminant-criterion value (X3)

among all linear combinations of the X's that are uncorrelated

with both Y1  and Y2 ; and so on until Yr using the

25
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elements of Vr as weights, has the largest possible

discriminant-criterion value among linear combinations that

are uncorrelated with all the preceding linear combinations

. .. YI'Y ....... 'Yr-i The linear combinations YI,Y 2 .....

"''Yr are called the first, second. ...... , r th (linear)

discriminant functions for optimally differentiating among

the g given groups.

The situation here is reminiscent of principal com-

ponents analysis. There, the dimension corresponding to the

first component had maximum variance; the second-component

dimension had maximum variance among those uncorrelated with

the first; and so on. In discriminant analysis, the ratio

of between-to within-groups sums-of-squares merely takes the

place of variance as the criterion in determining the

successive dimensions. However, an important difference

between the dimensions identified in discriminant analysis

and those in component analysis is that the former are

generally not mutually ortbogonal in the test space, even

though they are uncorrelated. That is, the axis representing

the discriminant functions are not a subset of axes obtainable

by rigid rotation of the original system of p axes; the

discriminant rotation in an oblique rotation.

Just as in the principal components analysis, the

dimensions represented by the discriminant functions may be

interpreted meaningfully. Even if they are not, it may be

possible to achieve parsimony by reducing the dimensionality

of the space needed to describe group differences. In

26



* seeking to interpret the discriminant functions, the goal is

to determine which of the original p variables contribute

most to each function. For this prupose, comparison of the

realtive magnitudes of the combining weights as given by the

elements of each eigenvector of WIB is inappropriate

because these are weights to be applied to the variables in

raw-score scales, and are hence affected by the particular

unit used for each variable.

To eleminate the spurious effects of units of measure-

ment on the magnitudes of combining weights, standarized

variables should be used.

The relative magnitudes of these standarized weights may

be assessed by multiplying each raw-score weight by the

standard deviation of the corresponding variable as computed

from the within-groups SSCP (Sum of Squares, Cross product)

matrix. This amounts to multiplying each element of a given

eigenvector Vm by the square root of the corresponding

diagonal element of W . Thus, for each m , define

Vmi - wii Vmi i = 1,2...... p (27)

as the standarized discriminant weights. The relative con-

tribution of the i th variable to the m th discriminant

function may then be gauged by the magnitude of vmi* in

comparison with the other weights vmj*

Up to this point, it has been shown that the dimension-

ality of the discriminant space is equal to the number of

27



nonzero eigenvalues of WIB , which is the smaller of the

two numbers, G-1 and p . It may often happen, that the

number of significant discriminant dimensions may be even

smaller. That is, not all of the discriminant function may

represent dimensions along which statistically significant

group differences occur.

C. SIGNIFICANCE TEST IN DISCRIMINANT ANALYSIS

A basic quantity in testing the significance of the

overall difference among several group centroids (mean

vectors) the ratio of the determinants of the within-

groups and the total SSCP matrices, known as Wilks' A

criterion.

A = WI(8

Motivation for use of this equation may be seen as follows:

1 = ITI -T

= w1l (w + B)I (29)

= (1 + X)(1 + X2); .... ,(' + Xr)

where X 1 . rare the nonzero eigenvalues of W- B

Consequently, Bartlet's V statistic for testing the

significance of an observed value can be expressed as

28



V - [N - 1 (p + G)/21lnA

[N 1 (p + G)/2i In [(1 + X + )]30)

[N: 1 CP + G)/2] E In(l + r3)
ml

This statistic is distributed approximately chi-square with

p(G-I) degrees of freedom.

Because of the uncorrelatedness of the successive

discriminant functions, the successive terms In(l + Xm)

in the last expression above are statistically independent

(assuming multivariate normality of the original p

variables). As a result, the additive components of V are

each approximately distributed as a chi-square variate.

More specifically, the m th component,

Vm = [N - 1 - (p + G)/21 ln (1 + Xm) (31)

is approximately chi-square with p + G - 2m degrees of

freedom. It may be readily verified that the sum of the

number of degree of freedom (n.d.f) of the r components,

that is, (p + G - 2) + (p + G = 4) . ....... (p + G - 2r) ,

is equal to p(G - 1) regardless of whether r= G - 1 or

p.

Consequently, when we cumulatively subtract VIV 2 ,

and so on from V , the remainder each time is also a

chi-square variate; and these successive remainders become

appropriate statistics for testing whether the residual

discrimination after removing the first discriminant

29



function, the first and second discriminant function, and

so forth, is statistically significant. The successive

test statistics and their n.d.f.'s may be summarized as

follows:

Residual After Approximate
Removing - Statistic n.d.f.

First discriminant V - V1  p(G-l) - (p+G-2)
Function = (p-1)(G-2)

First 2 discriminant V V1 - V2  (p-l)(G-2)-Cp+G-4)
Function =(p-Z) (G-3)

First 3 discriminant V - V1 - V2  V3 (p-2)(G-3)-(p+G-6)
Function =(p-3) (G-4)

First s discriminant V-VI-V 2-V3...-Vs (p-s)(G-(s+l))
Function

As soon as the residual, after removing the first s

discriminant functions becomes smaller than the prescribed

percentile point (that is, the 100(l - c)th percentile) of

the appropriate chi-square distribution, we may conclude

that only the first s discriminant functions are

significant at that a level. If the number of signifi-

cant discriminant functions thus found is smaller than r

(as will often be the case), we will have effected a further

reduction in the dimensionality of the space required to

describe the differences among the G groups from which
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I
our sample groups were drawn. The remaining r-s dimensions

may be regarded as immaterial for population differentiation,

since our sample differences along these dimensions can be

attributed to sampling error.
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IV. CLUSTER ANALYSIS

A. ORIGIN AND THEORY

Clustering is the grouping of similar objects. The

principal functions of clustering are to name, to display,

to summarize, to predict, and to aid in interpretation of

data with many dimensions. Clustering techniques were

first developed in the field of biological taxonomy. It is

one of several methodologies included in the broader cate-

gory called classification.

The cluster analysis problem is the last step we

consider in the progression of category sorting problems.

While in discriminant analysis some part of the structure

is known and missing information is estimated from labeled

samples, the operational objectives of clustering is to

classify new observations, that is, recognize them as members

of one category or another. In cluster analysis little or

nothing is known about the category structure. All that is

available is a collection of observations whose category

membership are known. We seek to discover a category

structure which fits the observations. The problem may be

stated as one of finding the "natural groups", which means

to sort the observations into groups such that the degree of

"natural association" is high among members of the same

group and low between members of different groups.
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Cluster analysis techniques have been applied in many

fields of study. The literature is both voluminous and

diverse, the terminology differing from one field to

another. "Numerical taxonomy" is frequently substituted

for cluster analysis among biologists, botanists, and

ecologists, while some social scientists may refer "typology".

Other frequently encountered terms are pattern recognition

and partitioning. While discriminant analysis has been

studied by statisticians for nearly 45 years, cluster

analysis has only recently come to statistical notice. Any

method which partition a set of objects into subsets on

the basis of measurements taken on every object qualifies

as a clustering method.

Most of the well known clustering techniques fall into

one of two main categories: (1) hierachical and (2) non-

hierachical (partitioning). The former is one in which

every cluster obtained at any stage is a merger of clusters

at previous stages. The nonhierachial procedures however

form new clusters by lumping and splitting old ones. We

consider both categories shortly.

In a geometric sense, every observation may be viewed

as a point in p-dimensional Euclidean space. This swarm of

data points may contain dense regions or "clouds" of data

points which are separable from other regions containing a

low density of points. These denser regions constitute what

are known as clusters. In one and two dimensional cases, it

is easy to visualize and to detect the clusters from scatter
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plots, assuming that the clusters exist. In higher

dimensions, clustering becomes extremely difficult without

the aid of a computer.

Mathematical clustering techniques usually require a

measure of similarity to be defined for every pairwise

combination of the entities to be clustered. In order to

solve the cluster problem, it is desirable to define the

terms "similarity" and "difference" in a quantitative

fashion. A researcher would assign two observations to

the same group if the distance between them is sufficiently

small, or to different clusters if this distance is

sufficiently large.

At this point, two questions may be brought on. The

first one is "how do we measure the distance between the

observations?" and the second one is "how small is small

enough?" and how large is large enough? These will be

discussed in the following sections.

B. MEASURES OF DISTANCE

1. General

Let Ep be a symbolic representation for a

measurement in p-dimensional space and let X,Y, and Z be

any of these points in E . Then any nonnegative real-

valued function D(X,Y) satisfying the following conditions

qualifies as a distance function (or metric).

1. D(X,Y) - 0 if and only if X = Y

2. D(X,Y) > 0 for all X and Y in Ep

34



3. D(X,Y) = D(Y,X)

4. D(X,Y) < D(X,Z) + D(Y,Z)

Many clustering algorithm assume such distances given and

set about constructing clusters of objects within which the

distances are small. The choice of distance function is no

less important than the choice of variables to be used in

the study. A serious difficulty in choosing a distance lies

in the fact that a clustering structure is more primitive

than a distance function and that knowledge of clusters

changes the choice of distance function. Thus a variable

that distinguishes well between two established clusters

should be given more weight in computing distances than a

"junk" variable that distinguishes badly.

2. Euclidean Distance

The Euclidean distance between the I-th and K-th

observations of a data matrix X is defined as

21/2

D(I,K) E[ {X(I,J) - X(K,J)}11  (32)
i1 < J< p

where J is J-th variable. In one, two, or three

dimensional space, this is just a "straight line" distance

between the vectors corresponding to the I-th and K-th

observations. When the variables are measured in different

units, it is necessary to prescale the variabes to make

their values comparable or, equivalently, to compute a

weighted Euclidean distance.
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D(IK) = W M IJ) (X(K,J)) / (33)

This form of distance is not necessary if all variables are

measured on the same scale. However, even in this case,
weights might be used to increase or decrease the importance

of same variable. Various weighting schemes have been

utilized in practice. One common weighting scheme lets

W(J) be the reciprocal of the variance of variable J

A general class of squared distance functions is

provided by utilizing positive definite quadratic forms.

Specifically, if p represents a p-dimensional observation

to be assigned to one of s groups, then to measure the

squared distance between the observation a and the

centroid (mean vector) of the i-th group one may consider

the function

Di = 8-.)T M (s - Xi.)

where M is a positive definite matrix to ensure that

Di ! <0 . Different distance functions are represented by

different choices of the matrix M . When M - I (the

identify matrix) the resulting metric is the standard

Euclidean distance. Distances with the Euclidean metric are

shown in Figure la. The variance within the data may make

the unweighted Euclidean metric inappropriate. As shown on

the Figure lb, where X has a larger variance than Y ,
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one may wish to weight a deviation in the X direction less

than an equal deviation in the Y direction. This is a

weighted Euclidean distance frunction which makes point A

and B equidistance from the origin. In this case, the

matrix M is diagonal elements which are the reciprocals of

the variances of the different variables.

Extending this idea further, it may be possible to

consider the covariance among variables as well. Figure lc

shows how the axis may be rotated so that the major axis is

oriented in a direction of reflecting the positive correla-

tion between X and Y Again, points on the same

ellipse are considered equidistance from the origin. The

matrix N1 in this case is the inverse of the covariance

matrix.

Further extension of this concept will expalin some sort

of generalized distance function. If Ci represents the

covariance matrix of the i th cluster then the distance

function

.=( )T c1  8-i
Di  i. Ci (a _ xi.)

uses the appropriate covariance structure when determining
the distance to a particular cluster centroid. Since C.

changes to reflect the dispersion internal to each particular

cluster, the use of this metric exploits differences in the

dispersion characteristics of the different groups. As shown

on Figure ld, not how a new observation (denoted by u) is
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la. Euclidean measure lb. Measure of squared distance-
of squared distance. with different weights for variables.

A U

1c. Ceneralised squared ld. Classification when within-
distance measure. group dispersions are. different.

Fignule 1. Euclidean Distance
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closer to the centroid of group one (Gl) in terms of

Euclidean distance but is more likely to be assigned to

group two (G2) when using the C. matrix.
1

3. Mahalanobis Distance

Another choice for the M matrix in equation (1)

is p where P represents the pooled within groups

covariance matrix of all the clusters.

P I W (34)

G n i

where GW = Wk
k=k = 1

This distance is the well known Mahalanobis distance. Note

that P does not change from group to group. To ensure

the non-singularity of P it must be true that p < (N - ,

where N represents the total number of observations over

all groups. Rewriting the distance,

Di  =iB i.) T W- I( - i. )  (35)

defines a distance between mean vectors 8 and xi. and

common covariance matrix W . The Mahalanobis distance

function adjusts for both scale of measurement of the

variables and covariation among the variables. Use of this
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metric is equivalent to computing distances on variables

transformed to their principal components. This metric is

invariant under any nonsingular transformation of original

variables. For consider the transformation

Y = BX (36)

and let D(Yi,Y ) represent Mahalanobis distance between

Yi and Y.

D(Yi'Y) = (Yi y)Tp Y (Yi - Y)

- (BXi - BX )Tp l(BXi - BX.)

- (X i  x.) B p B(X i - X.)

- (Xi  x )T BT (BPxBT) -B(X i X.)

- (X i  x)T Px-l I (X i . X.)

- D(Xi, X )

Some other common metrics are listed below:

1. L norm (City Block)

PD(XiX )  z j Xk - Xk I
Sk = 1 i k

2. Lp norm (Minkowsky Metrics)
pP

D(XiX) k z I Ix ki . Xkj [)/
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3. Uniform norm

D(Xi,X.) = Superemum {IXki - XkjI}
~ k=lI, 2, ...,p

C. HIERARCHICAL CLUSTERING

1. General

The previously discussed distance measures may be

used to construct a similarity matrix describing the length

of all pairwise relationships among the entities (variables

or data units) in the data set. The methods of hierachical

cluster analysis operate on this similarity matrix to con-

struct a tree depicting specified relationships among the

entities. As shown on Figure 2, the branches on the left

each represent one entity while the root represents the

entire collection of entities. Moving down the tree

from the branches toward the root depicts increasing aggre-

gation of the entities into clusters. Hierarchical

clustering methods which build a tree from branches to

root often are called agglomerative methods.

Once a tree is constructed for N entities, the

analyst may choose from as many as N sets of clusters.

These clusters are nested. From the agglomerative view,

when two entities are merged they are joined togehter per-

manently and considered as one entity for later merges; from

the divisive view, when a group of entities is split into

two parts, the parts are separated permenently and may be

treated independently for the remainder of the analysis.
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Figure 2. Tree for Hierarchical Clustering

Herein lie both the strength and weakness of

hierarchical methods: by taking early decisions as perma-

nent, the number of posibilities that need be examined is

reduced greatly as compared with complete enumeration;

but this same convention precludes discovering early

mistakes or capitalizing on later opportunities.

There are three major hierarchical clustering concepts:

1. Linkage Methods

2. Centroid Methods

3. Error sum of squares or variance methods.

All of these methods are suitable for clustering data units.

However, only the linkage methods are considered in this

research.

2. The General Agglomerative Procedure

Let sij be the similarity between entities i

and j as defined by one of the distance measures previously

discussed. Assuming that the similarity is symmetric, the

N I
complete schedule of similarities for all 2) = 2N(N - 1)
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possible pairwise combinations of entities may be arrayed

in a lower triangular similarity matrix as in Figure 3.

The s entries are nonnegative. This limitation is of

consequence only for correlation and the cosine of the angle

between vectors; the distinction between positive and nega-

tive association cannot be utilized in these clustering

methods.

s21

s31 s32

s41 s42 s43
S

Sn1 Sn2 Sn3 .... Sn(n-l)

Figure 3. Lower Triangular Similarity Matrix

A simple remedy is to use the absolute value or the square of

the measure if it can assume negative values. Once the

matrix is defined, the process of clustering entities is

almost trivially simple. The general procedure for agglomer-

ative clustering on a data matrix is as follows:

(1) Begin with n clusters each consisting of

exactly one entity. Let the clusters are

labled with the numbers 1 through N.
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(2) Search the similarity matrix for the most

similar pair of clusters. Let the chosen

clusters be labeled p and q and let

their associated similarity be spq, p > q.

(3) Reduce the number of clusters by 1 thorugh

merger of clusters p and q Label the

product of the merger q and update the

similarity matrix entities in order to

reflect the revised similarities between

cluster q and all other existing clusters.

Delete the row and column of S pertaining

to cluster p

(4) Perform steps 2 and 3 a total of N-1 times

(at which point all entities will be one

cluster). At each step record the identity

of the clusters which are merged and the value

of similarity between them in order to have

a complete record of the results.

Different agglomerative methods are implemented by

varying the procedures used for defining the most similar

pair at step 2 and for updating the revised similarity

matrix at step 3. The similarity matrix is a given array

of numbers. The numerical execution of the clustering

procedures is completely independent of how the similarity

values were generated or whether the entities to be

clustered are variables or data units. However, it is

necessary to make a direct distinction between distance-like
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measures (the smallest values correspond to the most similar

pairs) and correlation-like measures (the largest values

correspond to the most similar pairs); the essential

difference is whether the search for the most similar pair

involves seeking the minimum or maximum entry in the simi-

larity matrix.

3. Single Linkage

The method of single-linkage cluster analysis is

the simplest of all hierarchical techniques. At each stage,

after clusters p and q have been merged, the similarity

between the cluster (labeled t) and some other r is

determined as follows:

1. If si is the distance-line measure

tr = min (spr, Sqr) (37)

The quantity Str is the distance between the two closest

members of clusters t and r . If clusters t and r

were to be merged, then for any entity in the resulting

cluster the distance to its nearest neighbor would be at

most Str *

2. If sij is a correlation-like measure

Str = max (spr, Sqr) (38)

The quantity str is the similarity between the two most

similar entities in clusters t and r . If clusters t
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and r were to be merged, then for any entity in the

resulting cluster there would be at least one other entity

in the same cluster such that the pair would have a similarity

at least as large as str

The method is known as single linkage because clusters

are joined at each stage by the single shortest or strongest

link between them. Since the updating process involves

choosing only the minimum or maximum single-linkage clustering

is invariant to any transformation which leaves the

ordering of the similarities unchanged; that is, any monotonic

transformation.

4. Complete Linkage

The complete-linkage method is related to the single-

linkage method and is no more difficult to execute. At each

stage, after clusters p and q have been merged, the

similarity between the new cluster (labeled t) and some

other cluster r is determined as follows:

1. If sij is distance-like measure

5tr = max (spr 'Sqr) (39)

The quantity s tr is the distance between the most distant

members of clusters t and r If clusters t and r

were merged, then every entity in the resulting cluster

would be no farther than Str from every other entity in

the cluster. The value of str is the diameter of the

samllest sphere which can enclose the cluster resulting from

the merger of clusters t and r.
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2. If s is a correlation-like measure

Str = min (Spr s qr) (40)

The quantify Str is the similarity between the two most

dissimilar entities in clusters t and r If clusters

t and r were to be merged, then every entity in the

resulting cluster would have a similarity of at least str

with every other entity in the cluster.

The method is called complete linkage because all

entities in a cluster are linked to each other at some

maximum distance or minimum similarity. Such a cluster

is called a "maximally connected subgraph" in graph theory.

In contrast to the single-linkage method, interpretation

of the clusters can be made only in terms of the relation-

ships within individual clusters; there is no particularly

useful interpretation involving the differences between

clusters. Like the single-linkage method, complete-linkage

cluster analysis is invariant to monotonic transformations

of the similarity measure. Johnson (1967) discusses this

property in both single and complete linkage methods.

D. NONHIERARCHICAL CLUSTERING

Nonhierarchical clustering methods are designed to

cluster data units into a single classification of g

clusters, where g either is specified a priori or is

determined as a part of the clustering method. The central

idea in most of these methods is to choose some initial
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partition of the data units and then alter cluster member-

ships so as to obtain a better partition. The various

algorighms which have been proposed differ as to what

constitutes a "better partition" and what methods may be used

for achieving improvements.

The broad concept for these methods is very similar

to that underlying the steepest descent algorithms used

for unconstrained optimization in nonlinear programming.

Such algorithms begin with an initial point and then

converge to a local optimum, moving one step at a time,

the value of the objective function improving at each step.

The methods of nonhierarchical clustering typically

may be used with much larger problems than the hierarchical

methods because it is not necessary to calculate and store

the similarity matrix; it is not even necessary to store

the data set. In general, the data units are processed

serially and can be read from tape or disk as needed. This

characteristic makes it possible, at least in principle, to

cluster arbitrary large collections of data units.

In this research, we consider only the partitioning

method known as "K-MEANS" which was developed by MacQueen

(15). He used the term "K-MEANS" to denote the process of

assigning each data unit to that cluster (of k clusters)

with the nearest centroid (mean vector). The cluster

centroid changes with each transfer of an observation.

The decomposition of the total scatter matrix into

within and between groups matrices suggests possible
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optimality criteria to be used in a clustering algorithm.

One would like the within-groups scatter to be small

relative to the between-groups scatter. Various trial

clusterings could be formed using the W and B matrices

as a basis for the optimality criteria which determine the
best clustering. A possible choice for a criterion is to

minimize trace W over all partitions into g groups.

Since T is constant over all partitions, minimizing trace

W is equvalent to maximizing traces B since

trace T = trace W + trace B (41)

Although trace W is invariant under an orthogonal

transformation, it is not invariant under other non-singular

linear transformations.

McRae (16) points out that trace W equals the total

within group sum of squares, hence the "minimum variance

partition" cluster solution is found by minimizing trace W

Considerable study has been developed to alternative

criteria such as those based on multivariate statistical

analysis techniques, especially the methods of linear

discriminant analysis and multivariate analysis of variance.

Assuming the p variables are not linearly dependent, then

as long as p N - g , W is positive definite symmetric

and so is W_ Attempts to make B and W as different

as possible lead one to solving the determinantal equation:

lB -XW 0 (42)
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The solutions X. are the eigenvalues of the matrix W-1 B
1

as in discriminant analysis. There are t non-zero

eigenvalues, where t is the minimum of p and g-l

This is a consequence of the fact that, if g is less than

p , the g group means are considered in a (g-l)-dimensional

hyperplane. When g = 2 the analysis is equivalent to

two-group discriminant analysis. Linear discriminant

analysis would take the vectors originally described in

p-dimensional coordinate system and transform the basis to a

t-dimensional system. Maximizing the largest of these

eigenvalues is a criterion suggested by S.N. Roy and

maximizing the trace of W 1 B , however is a criterion

suggested by Hotelling. In both cases, large values for

these statistics are sought in clustering algorithms since

large values indicate large differences among (between)

groups. Minimizing the ratio of determinants JWI + ITI

is a criterion widely known as Wilks' lambda discussed in

the discriminant analysis. Since T is the same for all

partitions, this criterion is equivalent to minimizing

determinant W Both trace W-1 B and ITI L IwJ may

be expressed in terms of the eignevalues of W_ 1 B

1( + 7r i ) (43)

i= 1

t
trace WIB - Z X. (44)

ol 1
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where t - min(p, g-l) Therefore minimizing det W is

equivalent to maximizing r(l + X

Friedman and Rubin (6) describe the advantages of the

various criteria. Those based on multivariate statistical

considerations (all but trace W ) are invariant under

changes in scale for varibles (non-singular linear trans-

formation). In fact, they are the only invariants for W

and B under such transformations. In addition, the

multivariate criteria may take into account covariation

among the variables.
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V. ANALYSIS OF MULTIVARIATE UTILITY DATA

To illustrate hierarchical clustering we applied the

technique described in the previous chapter to partition a

set of twenty six attributes of a close-air support weapon

system into a smaller collection of "superattributes". As

part of an effort to evaluate the military utility of a

proposed alternative U.S. Marine Corps air support rada

system, AN-TPQ/27. Barr and Richards (4) extracted 26

attributes of the TPQ-27 and a baseline system, the AN-TPQ/10,

and then had members of the Operational Test and Evaluation

Team assess the utility of the TPQ/27 relative to that of the

TPQ/10. In order that the additive model used to combine

unidimensional relative utilities into a system relative

utility be justifiable, it is necessary that the utilities

satisfy certain independence properties described in Keeney

and Raiffa (12).

Because those independence properties are very diffi-

cult for decision makers to verify for complex alternatives

like the weapon systems under study, Professors Barr and

Richards attempted instead to work with the attributes to

try to generate a new collection which would likely satisfy,

at least approximately, the conditions required to justify

the additive model.

The original collection of 26 attributes is as follows:
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1. Portability

2 Durability

3. Time to Set Up

4. Time to Take Down

S. Ease of Assigning Aircraft to Targets

6. Number of Aircraft Controlled

7. Number of Targets

8. Communications

9. Mission Flexibility

10. ASRT Survivability

11. Time to Locate and Acquire Aircraft

12. Accuracy of Tracking

13. Accuracy of Delivery

14. Range

15. Aircraft Vulnerability

16. Aircraft Attack Throughout

17. Base of Adjustment and Evaluation of Results

18. Accuracy of Feedback

19. Ease of Operation

20. Man-Machine Compatibility

21. Training Requirements

22. Reliability

23. Maintainability

24. Supportability

25. Availability

26. Documentation
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where ai  represents an attribute i and
'1 if

I0  if Xij € Xkj

It is easy to verify that D is a metric as defined in

Chapter IV. Since we will actually work with a similarity

measure in the hierarchical cluster procedure, we define

the similarity between two attributes ai and ak as

12

S(ai , ak) z I(xij I Xkj) (46)

One can see from this definition that the similarity between
two attributes ai and ak is simply the number of team

members who placed attributes ai and ak in the same

partition. For example,

S(a I , a2) 0 + 1 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + 0 + 0

+1+0=4

Either S or D can be used in the computer program

shown in Appendix A for hierarchical clustering. One need

only indicate whether he wants a correlation-like (larger

values imply more similar) measure or a distance-like

measure (smaller values imply more similar). We selected to

use the former method. The similarity matrix extracted from
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Table II. Data Matrix

1 2 3 4 5 6 7 8 9 10 11 12

1 6 2 1 3 2 4 3 1 3 1 1 1

2 1 2 2 3 1 3 2 1 1 S 1 2

3 6 1 1 5 2 4 3 1 6 1 2 1

4 6 1 1 S 2 S 3 1 6 1 2 1

5 2 S 3 1 3 1 1 2 2 2 3 3

6 2 7 4 1 4 1 1 2 4 2 3 3

7 2 7 4 1 4 1 1 2 4 2 3 3

8 3 S 4 7 S 6 1 3 1 3 3 6

9 2 5 4 1 3 1 1 2 4 2 3 3

10 9 6 S 6 5 7 8 3 7 3 2 4

11 2 8 6 4 3 2 1 4 4 2 3 3

12 3 8 7 4 4 2 6 S 4 6 4 3

13 3 8 7 4 4 2 6 S 4 6 4 3

14 3 8 4 4 4 2 6 S 4 2 4 3

1$ 7 6 S 6 5 7 7 3 7 3 7 4

f6 8 8 6 1 4 1 7 4 4 2 7 3

17 8 8 8 4 3 2 5 6 S 4 S 3

18 4 8 8 4 6 2 S 6 S 6 S 3

19 4 S 3 1 3 1 1 2 2 4 3 3

20 4 S 3 :3 3 3 3 1 2 4 8 3

21 S 4 9 2 3 8 4 7 2 4 6 S

22 1 3 2 3 1 3 2 7 1 S 6 2

23 1 3 9 3 1 3 2 7 1 S 6 2

24 1 3 4 3 1 3 2 7 3 S 6 2

2S 1 3 2 3 1 3 2 7 1 S 6 2

26 S 4 9 2 6 8 4 7 2 4 6 5
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from the data is shown in Table V-3. We present only lower
triangular elements since S(ai , a.) = 12 for all i and

the matrix is symmetric; i.e., S(ai , ak) = S(ak , ai).

Zero values are not written.

The results from the hierarchical clustering are shown

in Figure 4. The numbers printed along the left hand

margin refer to the attribute numbers. As you proceed to

the right through the tree you will observe numbers greater

than 26. These correspond to the clusterings that takes

place from one step to the next. For example, the number

27 shown at the juncture of 25 and 22 means that the first

attribute clustered together should be 25 and 22 (this is

the most similar pair). This combination is then considered

as a new attribute which is later combined with the attribute

30 (itself a combination of 23 and 24) to form the attribute

31. This is later combined with attribute 2 to form

attribute 40, etc.

As discussed in Chapter IV a decision has to be made as

to how many clusters (superattributes) are desired. All

hierarchical methods will continue clustering until there

is a single cluster. In order to decide on the number of

clusters (and their composition) one need only image drawing

a vertical line through the tree at various places. Each

intersection of the tree with the vertical line results in a

cluster. For example, teh vertical line at the point A

results in the 6 clusters shown in Table V-4.
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It is clear from observing the above collection that

some of the attributes are highly correlated and nonredun-

dant. If one tries to assign an importance weights to each

attributes separately, there is a distinct likelihood that

some of the overlapping strongly into related attributes

might effectively be double or triple weighted or more

producing biased result. It is an effort to prevent this

from happening, Barr and Richards aksed the utility assess-

ment team to partition the 26 attributes into a smaller

collection in such a way that attributes within a group are

similiar and attributes in different groups are unrelated the

sense that utility assessments for attributes in one group

do not depend on the amounts of attributes in any other

group.

The total number of groups was not prespecified.

Instead, each team member was allowed to partition the 26

attributes into any number of groups. The resulting multi-

variate data array is shown in Table V-2. An element x.-

is the number of the group into each team member j put

attribute i .

Let us define a distance measure for this data array

as follows:

12

D(ai,ak) = 1 (1 - I(xi , ) (45)
j = 1 (1 Xkj)
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Table III. Similarity Matrix for Superattribute Determinaton.

1 2 3 4 S 6 7 8 9 10 11 2 13 14 1S 16 17 18 1920 21 222 3 24 2S 26
1

2 4

3 8 1
4 7 1 l-

6 8 -

7 812

8 1 1 3313
9 1 0, 10110

10 3

11 6 6 6 2 7
12 1 3 3 1 1 2 S 1
13 1 3 3 1 2 1 512-
14 2. S S 2 94 5 9 9

15 3 _ 9 1
16 3 5 5 4 1 16 3 3 4 3
17 2 1 1 1 2 S 4 4 3 _

18 1 1 1 1 S 4 4 3 1 9
19 19 5 S 2 7 3 2 2 1-
20 3 1 1 S 1 1 1 3 2 2 1 8

21 1 1 2 13 3
22 2 8 12 z
23 2 7 12- 3 Ill

24 3 6 1 2 3 10 1
2S 2 t 2 2112 .11110

26 2 11 2 2 9 3 4 4 3
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I

The superattributes used in the utility study are those

sohwn in Table IV. A careful examination of the attributes

I which comapre the clusters shows that the results so obtained

are intuitively agreeable. The names supplied to the

superattribures are somewhat natural descriptions of the

clusters obtained.

The listing of the computer program and sample output

are given in Appendix A.
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Table IV. Superattributes

Superattributes Component Attributes

Facility of movement 1. Portability
3. Time to set up
4. Time to take down

------------------------------------------------------------------
Facility of Use 5. Ease of assigning

aircraft to targets
(precision) 6. Number of aircraft

controlled
7. Number of targets
9. Mission flexibility

11. Time to locate and
acquire aircraft

16. Aircraft attack
throughput

17. Ease of adjustment
18. Accuracy of feedback
19. Ease of operation
20. Man-machine compatibility
12. Accuracy of tracking
13. Accuracy of delivery
14. Range

Survivability 10. ASRT Survivability
15. Aircraft vulnerability

Learning 21. Training requirements
26. Documentation

Readiness 2. Durability

22. Reliability
23. Maintainability
24. Supportability
25. Availability

Communications 8. Communications
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VI. ANALYSIS OF ARMY TANK DATA

A. DATA STRUCTURE

In order to illustrate the nonhierarchical clustering

methodology, principal components analysis, and discriminant

analysis data on Army tanks from eight different countries

were taken from Jane's Book of Weapon Systems (1979-80).

A total of twenty-four tanks were included in the data

array with observation on each of 10 variables. The 10

variables are listed below:

1. Weight (ton)

2. Length (meter)

3. Width (meter)

4. Height (meter)

5. Road Speed (kilometer per hour)

6. Trench Crossing (meter)

7. Ground Pressure (Kg/cm )

8. Maximum Armament (rounds)

9. Ground Clearance (meter)

10. Power to Engine Ratio (BHP/ton)

The twenty-four tanks and the associated countries are

shown below:

Identification Number Type/Name Country

11 T-62

12 T-54 U.S.S.R.
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Identification Number Type/Name Country

13 T-10

14 ASU-85

15 MK-5/Chieftain

16 MK-3/Vickers

17 MK-13/Centurion U.K.

18 CVR(T)/Scorpion

19 XM-1

20 M60A2

21 M60 U.S.A.

22 M48

23 M47

24 PZ61
SWITZER-

25 PZ68 LAND

26 STRV-103
SWEDEN

27 Ikv-91

28 TYPE61

29 TYPE74JAN

~130 Leopard 2

31 Leopard W. GER-
MANY

32 TAM

33 AMX 3C
FRENCH

34 AMX 13
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We conjecture that a cluster analysis of the tank data will

result in clusters corresponding to nationality since the

nations may have different emphasis on the variables in

the design of their tanks.

B. NONHIERARCHICAL CLUSTER ANALYSIS OF TANK DATA

1. The MIKCA Algorithm

The specific algorithm chosen for the nonhierarchical

cluster analysis for the tank data is the MIKCA (Multivariate

Iterative K-MEANS Clustering Algorithm) program written by

Douglas J. McRae as a part of his doctoral dissertation

at the University of North Carolina, Chapel Hill.

Reference to the flow chart in Figure 5 will aid the

reader in following discussion of the algorithm. Inputs to

program are the data matrix, an estimate for g (the

number of clusters), and choice of criterion and distance

functions.

In the first step, preliminary claculations are made,

such as the variable means and standard deviations, as

well as the cross product matrix T . The next step forms

the initial cluster centers. Then each of the other

observations is assigned to the nearest cluster. Euclidean

distance is used for this initial phase, and the cluster

centroids are recomputed after each observation is assigned

to a group. The observations are considered in the same

order as they were input. After all of them have been

assigned to clusters, the criterion value is computed.

This initial cluster-finding technique is referred to as a
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PRELIMINARY1
INPUT CALCULATIONS

INITIAL CLUSTER

SOLUTION

YES CRITERION NO

IMPROVEMENT ?II

INDIVIDUAL SWITCHES

YES ANY SWITCHES? NO OUTPUT

II
II

Figure 5. MIKCA Flow Chart
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one-pass K-MEANS procedure. It is performed three times,

and the solution which yields the best criterion value is

chosen as the initial cluster solution.

After the initial solution has been found, the program

advances to the iterative K-MEANS phase where the observations

are again considered in the order in which they were input to

the program. It is this phase where the user's choice of

distance function is used. The distance from each observa-

tion to each cluster centroid is again computed, this time

with the user's distance function, the assignment to the

closest centroid being made and the centroid updated to

reflect its new membership. After considering all n

observations in this manner, the new criterion value is

checked for possible improvement during the K-MEANS iteration.

As long as the criterion value improves, the K-MEANS

procedure is repeated; if the criterion fails to improve then

the MIKCA algorithm goes to the next step, the individual

switches section. Note the importance of the order of

consideration of the observations. The order is important

because the cluster means are recomputed after each observa-

tion is reassigned.

In the individual switches phase, consideration is given

to moving each observation to every other cluster, the move

being made if and only if an improvement in the value of

the criterion results. An elaborate labelling procedure

provides a unique order in which to consider each observation.
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This procedure continues until a complete pass through the

data is made with no changes in cluster membership.

The MIKCA alogorithm provides the following options for

distance and criterion functions.

f Criterion

1. Minimum trace W

2. Minimum determinant W

3. Maximum largest order of lB - XWJ = 0

4. Maximum sum of roots of IB - XWI = 0

Distance

1. Euclidean

2. Weighted Euclidean

3. Mahalanobis

A complete computer program is listed in Appendix B.

2. Cluster Results for Tank Data

For clustering of the tank data we selected the

minimum trace W criterion and the weighted Euclidean

distance function. The algorithm automatically provides

weights for the weighted Euclidean distance function.

The results of the clustering with four clusters are shown

in Table V.

The conjecture of clustering by nationalities is

supported by the results. The three Soviet tanks make up

one cluster and the two British and four of the United

States tanks were found to be similar. A third cluster

consists of four tanks which are very lightweight. The
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final cluster consists of the rest of the tanks, including

tanks of United States allies from West Germany, France,

Sweden, Switzerland and Japan.

A natural question to ask after observing the results

of a cluster analysis is what variables most strongly

influence the clustering that was observed. A clue is

provided by the composition of the cluster containing all of

the lightweight tanks. This suggests that weight is an

important distinguishing feature. This is examined in the

principal components analysis and the discriminant analysis

in the next two section.

C. PRINCIPAL COMPONENTS ANALYSIS

The Statistical Package for Social Sciences (SPSS)

(14) subprogram FACTOR was used for the principal components

analysis. It is designed both for the factor analysis and

the principal components analysis. The outputs are designed

to be self-explanatory. In this example, the first 5

components accoung for 90% of the variance and the remaining

components account for only 10% of the variance (Figure 6).

The subprogram FACTOR provides a graphical presentation

(Figure 7) for the factors that have been determined by the

orthogonal rotations (in this example, variance maximization

rotation). In reading the graphs, one should be attentive

to following three features: (1) the relative distance of

a variable from the axis, (2) the direction of a variable

in relation to the axis, and finally (3) clustering of

variables and their relative position to each other.
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For example, variables 5 (road speed) and 10 (power to

engine ratio) contribute heavily to the first principal

component while variables 1 (wieght) and 3 (width)

contributes most strongly to the second principal component.

Variables 2, 4, 6, 7, 8, 9 are not as important. The

weights accorded each variable in the 10 factors (principal

components) are shown in Figure 8. The complete SPSS

program is listed in Appendix C.

D. DISCRIMINANT ANALYSIS

The SPSS subprogram DISCRIMINANT was used to determine

that function or those functions of the 10 variables that

best discriminant among the four clusters determined in

previous section.

The maximum number of discriminant functions to be

derived is either one less than the number of groups or equal

to the number of discriminating variables. This subprogram

provides two measures for juiging the importance of

discriminant functions. One of these is the relative

percentage of the eigenvalue associated with the function.

It is a measure of the relative importance of the function.

The sum of the eigenvalues is a measure of total variance

existing in the discriminating variables. Since discriminant

functions are derived in order of their importance, this

process can be stopped whenever the relative percentage is

judged to be too small. Of course, there is no fixed rule

for deciding whatis too small. In this research, we selected

arbitrary, a significance level of 0.10. The output shown
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in Figure 9 suggests that we therefore consider only the

first two discriminant functions.

The second measure judging the importance of a

discriminant function is its associated canonical correlation.

The canonical correlation is a measure of association between

the single discriminant function and the set of (g-l) dummy

variables which define the g group memberships. It tells

us how closely the function and the group variable are

related, which is just another measure of the function's

ability to discriminate among the groups. From Figure 10,

the first two discriminant functions are each highly corre-

lated with the groups but the third has only a moderate

correlation.

The next criterion for eliminating discriminant

functions is to test for the statistical significance of

discriminating information not already accounted for by

the earlier functions. As each function is derived,

starting with no (zero) functions, Wilks' lambda is computed.

Lambda is an inverse measure of the discriminating power in

original variables which has not yet been removed by the

discriminant functions - the larger lambda is, the less

is the information remaining. Lambda can be transformed into

a chi-square statistic for an easy test of statistical

significance. In Figure 9, Wilks' lambda was .594 after

the first two functions had been derived. This corresponds

to a chi-square of 8.8476 with a probability level of .1823.
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This means that a lambda of this magnitude or smaller has a

.1823 probability of occurring due to the chances of

sampling even if there was no further information to be

accounted for by a third function in the population.

Clearly, a third function is not statistically significant

in this case.

The standarized discriminant function coefficients

corresponding to the values of the v 's discussed in the

previous section are used to compute the discriminant score

for a case (observation) in which the original discriminating

variables are in standard form. The discriminant score is

computed by multiplying each discriminating variable by its

corresponding coefficient and adding together these products.

There is a separate score for each observation on each

function. The coefficients have been derived in such a way

that the discriminant scores produced are in standard form.

When the sign if ignored, each standard discriminant

function coefficient represents the relative contribution of

its associated variable to that function. The sign merely

denotes whether the variable is making a positive orinegative

contribution.

A graphical presentation is shown in Figure 11 using

the first and the second canonical discriminant function as

the axis. From this scatterplot, we can easily see that

Soviet tanks (labelled 1) are well distinguished from the

all of the others using only the first two discriminant
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functions. Also, all the lightweight tanks are clearly

separated from the others. The distinction between groups

2 and 3 is also clear though not separated from each other

as much as from groups I and 4. The complete SPSS program

for the discriminant analysis is listed in Appendix D.

I

I
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VII. CONCLUSION

The multivariate analysis techniques of cluster analysis,

principal components analysis and discriminant analysis are

useful in real world problems for examining observations

on each of several dimension. Each of the techniques is

related mathematically to the others, and each complements

the other in explaining the data.

Computer software is readily available in many sources.

The software used in this thesis for hierarchical clustering,

principal components analysis, and discriminant analysis was

from the IMSL package and SPSS. For nonhierarchical

clustering, we used the FORTRAN program developed by McRae

(16). All of this softw'.re is readily available and

documented at the Naval Postgraduate School.
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